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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 2646 

INVISCID FLOW ABOUT AIRFOILS AT HIGH SUPERSONIC SPEEDS 

By A. J. Eggers, Jr., and Clarence A. Syvertson 

SUMMARY 

Steady flow about curved airfoils is investigated analytically at 
high supersonic speeds. Assuming air "behaves as an ideal diatomic gas, 
it is found that small pressure disturbances emanating from the surface 
of an airfoil are almost completely absorbed in the leading-edge shock 
wave (or a shock wave emanating from any other location on the surface), 
provided the flow deflection angles are not too close to those corre- 
sponding to shock detachment. This result is found to be essentially 
independent of Mach number. As a consequence, it is shown that within 
the limitations of the assumption of ideal gas flow, the shock-expansion 
method may be used with good accuracy to predict pressure distributions 
on curved airfoils at arbitrarily high Mach numbers. This observation 
is verified with the aid of the method of characteristics applied to a 
10-percent-thick.biconvex airfoil at 0° angle of attack. It is further 
shown that the shock-expansion method can be easily employed to con- 
struct the entire flow field about ä curved airfoil, accounting for 
shock-wave curvature and resulting entropy gradients in the flow. 

An approximation to the shock-expansion method for thin airfoils 
at high Mach numbers is also investigated, and is found to yield pres- 
sure distributions in error by less than 10 percent at Mach numbers 
above 3 and flow deflection angles up to 25°. This slender-airfoil 
method is relatively simple in form and thus may prove useful for some 
engineering purposes. To this end, tables are presented to facilitate 
its use. 

Effects of caloric imperfections of air manifest in disturbed flow 
fields at high Mach numbers are investigated, particular attention being 
given to the reduction of the ratio of specific heats from l.k  toward 
1.0. So long as this ratio does not decrease appreciably below 1.3, it 
is indicated that the shock-expansion method, generalized to include 
effects of these imperfections, should be substantially as accurate as 
for ideal gas flows. This point is checked by comparing pressure distri- 
butions predicted by the generalized shock-expansion method and a gen- 
eralized method of characteristics. Both methods are employed in forms 
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applicable for local air temperatures up to about 5000° Rankine, corre- 
sponding, for slender airfoils, to Mach numbers up to the order of the 
so-called escape Mach number. Caloric imperfections caused reductions 
in the pressure coefficients below those predicted for flows of an 
ideal gas. In turn, there is a general reduction in force and moment 
coefficients up to 10 percent. 

The slender-airfoil method is modified to employ an average value 
of the ratio of specific heats for a particular flow field. This sim- 
plified method has essentially the same accuracy for imperfect gas 
flows as its counterpart has for ideal gas flows. 

An approximate flow analysis is made at extremely high Mach numbers 
where it is indicated that the ratio of specific heats may approach 
close to 1. It is found that the shock-expansion method may be in con- 
siderable error as disturbances incident on the leading-edge shock wave 
are no longer largely absorbed in the wave. In this case, however, the 
Busemann method for the limit of infinite free-stream Mach number and 
specific heat ratio of 1 appears to apply with reasonable accuracy. 

INTRODUCTION 

Small-disturbance, potential-flow theories have been employed 
widely, and for the most part successfully, for predicting the pressures 
(and velocities) at the surface of an airfoil in steady motion at low 
supersonic speeds. Thus the linear theory of Ackeret (reference l) has 
proven particularly useful in studying the flow about relatively thin, 
sharp-nosed airfoils at small angles of attack, while the second-order 
theory of Busemann (reference 2) has found application when thicker 
airfoils at larger angles of attack were under consideration. At high 
free-stream Mach numbers the range of applicability of any potential 
theory is seriously limited, however, due to the production of strong 
shocks by even the relatively small flow deflections caused by thin 
airfoils. The assumption of potential flow is invalidated, of course, 
by the pronounced entropy rises occurring through these shocks. 

This limitation on potential theories was early recognized and led 
to the adoption (see reference 3) of what is now commonly called the 
shock-expansion method. The latter method derives its advantage over 
potential theories principally by accounting for the entropy rise 
through the oblique shock emanating from the leading edge of a sharp- 
nosed airfoil. Consequently, so long as the disturbed air behaves 
essentially like an ideal gas, and so long as entropy gradients normal 
to the streamlines (due to curvature of the surface) do not signifi- 
cantly influence flow at the surface, the shock-expansion theory should 
predict the pressures at the surface of an airfoil with good accuracy - 
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it is tacitly assumed, of course, that the flow velocity is everywhere 
supersonic, and that the Reynolds number of the flow is sufficiently 
large to minimize viscous effects on surface pressures. 

The departure of the behavior of air from that of an ideal gas at 
the temperatures encountered in flight at high supersonic speeds has 
been the subject of some investigation in the case of flows through 
oblique shock waves. In reference k,  the effects of thermal and caloric 
imperfections on the pressure rise across an oblique shock wave was 
investigated at sea-level Mach numbers of 10 and 20 and it was found 
that these effects decreased the rise by less than 5 percent for maximum 
temperatures up to 3000° R (corresponding to flow deflection angles up 
to 2k°). This decrease was found to be due almost entirely to caloric 
imperfections or changes in vibrational heat capacities of the air pass- 
ing through the shock wave. The changes in temperature and density of 
the air passing through the wave were affected to a considerably greater 
extent. Subsequently, an investigation was carried out by Ivey and 
Cline up to Mach numbers as high as 100 (reference 5) using the results 
for normal shock waves obtained by Bethe and Teller considering effects 
of dissociation (reference 6). As would be expected, the pressures 
were found to be affected to a somewhat greater extent at the higher 
Mach numbers. 

The extent to which flow in the region of the leading edge of an 
airfoil departs from the simple Prandtl-Meyer type has also been inves- 
tigated at high supersonic airspeeds. If the surface is curved, for 
example, to give an expanding flow downstream of the leading edge, 
expansion waves from the surface will interact with the nose shock wave, 
thereby curving it and yielding a nonisentropic flow field. This flow 
field may be characterized not only by disturbances emanating from the 
surface but also by disturbances reflecting to some extent from the 
shock wave back toward the surface. The manner in which these phenomena 
dictate shock-wave curvature and surface pressure gradient in ideal gas 
flows at the leading edge has been treated by Crocco (reference 7) and 
more recently by Schaefer (reference 8), Munk and Prim (reference 9), 
and others. In the cases considered by Munk and Prim it was found that 
surface pressure gradients were less (in absolute value) than those 
obtained assuming Prandtl-Meyer flow at the higher Mach numbers (i.e., 
Mach numbers greater than about 3) although generally by no more than 
about 10 percent. Since curved airfoils are likely to be of fundamen- 
tal interest at high flight speeds (see, e.g., reference 10), these 
phenomena would appear to merit further investigation, particularly as 
regards their influence on the whole flow field. In addition it wouid 
appear desirable to consider effects of gaseous imperfections through- 
out the field. 
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Such an investigation has therefore been undertaken in the present 
report using the method of characteristics to accurately obtain flow 
fields, and as a basis for obtaining the more approximate methods of 
analysis. The method is employed in a generalized form which allows 
caloric imperfections as well as entropy gradients in the flow to be 
considered at temperatures up to the order of 5000° R - thermal imper- 
fections are neglected as being unimportant in atmospheric air flows 
(see reference k). A 10-percent-thick biconvex airfoil is treated at 
Mach numbers from 3«5 to infinity, and the results are compared with 
the predictions of the shock-expansion method, including a simplified 
form of the method applicable to slender airfoils at high Mach numbers, 
and a generalized form of the method including effects of caloric 
imperfections. 

SYMBOLS 

a      local speed of sound, feet per second 

c      chord, feet 

Cx, C2  characteristic coordinates (Cx positively inclined and C2 
negatively inclined with respect to the local velocity 
vector) 

Cd     section drag coefficient 

C^      section lift coefficient 

Cm     section moment coefficient (moment taken about leading edge) 

/■p  - p0 

Cp     pressure coefficient (   

Cp specific heat at constant pressure, foot-pounds per slug °R 

cv specific heat at constant volume, foot-pounds per slug °R 

M Mach number (ratio of local velocity to local speed of sound) 

p static pressure, pounds per square foot 

q dynamic pressure, pounds per square foot 

R gas constant, foot-pounds per slug °R 
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s,n    rectangular coordinates (in streamline direction and normal 
to streamline direction, respectively) 

T temperature, °E 

t time, seconds 

V resultant velocity, feet per second 

x,y rectangular coordinates 

a angle of attack, radians unless otherwise specified 

ß Mach angle, arc sine ( -), radians 

y ratio of specific heats I ■—■ 
\Cy 

(Average value of y  is 7a-) 

5 flow deflection angle, radians unless otherwise specified 

6 molecular vibrational energy constant, °R (5500° E for air) 

p      mass density, slugs per cubic foot 

a shock-wave angle, radians 

ray angle for Prandtl-Meyer flow, radians u 

Subscripts 

free-stream conditions 

A>B> [   conditions at different points in flow field 
C,D...J 

i      ideal gas quantities 

N      conditions just downstream of shock wave 

S      conditions on streamline 

Superscript 

vector quantities 
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DEVELOPMENT OF METHODS OF ANALYSIS 

Method of Characteristics 

Two-dimensional rotational supersonic flows have been treated by- 
numerous authors with the aid of the method of characteristics, and 
various adaptations of the method have been found which are especially 
suited for studying particular types of such flows. In the case of 
steady flows in which atmospheric air does not behave as an ideal dia- 
tomic gas, a very familiar and simple form of the compatibility equa- 
tions may be employed. To illustrate, consider the Euler equation 

p _ = _ grad p (1) 

the continuity equation 

div (pv) = o (2) 

and the equation for the speed of sound (evaluated at constant entropy) 

a2 - I (3) 

Rewriting equations (l) and (2) in the form of partial differential 
equations and transforming the resulting expressions to the character- 
istic or Ci, C2 coordinate system, there is obtained, upon combination 
with equation (3), the following relations for steady flow: 

and 

ctg ß  f dp   _  dg_ V f J6_ + j&_ 
pV2    Vdd     dc2/     VdCi      dc2 

ctg ß / op   i $E_\+ (j*L_ _&_ 
pV2    VÖC3.      dC2/\dCi      ÖC2 

= 0 (k) 

(5) 

A simple addition or subtraction of equations (k)  and (5) then yields 
the compatibility equations (see, e.g., reference 11) 

^ = -pV2tanpi- (6) 
0C1 bcx 
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and 

^- = pV* tan ß il (7) 

Now, in reference k both caloric and thermal imperfections of air were 
considered and it was found that the latter imperfections1 have a neg- 
ligible effect on shock processes in atmospheric air. It may easily be 
shown that this conclusion also applies to expansion processes, and for 
this reason caloric imperfections, only, are considered in detail in 
the present paper. These imperfections become significant in air at 
temperatures greater than about 800° R and first manifest themselves as 
changes in the vibrational heat capacities with temperature. Thus, the 
specific heats, Cp and cv, and their ratio, 7, for the gas also change. 
The equation of state remains, however, 

p = pRT (8) 

and the specific heats are still related to the gas constant by the 
-expression 

cp - cv = R (9) 

Furthermore, it readily follows from the differential energy equation 
and these expressions that the speed of sound is given by the simple 
relation 

a2 = 7RT (10) 

Combining equations (8) and (lO) and noting that sin ß = a/v there is 
then obtained 

PV2 = -^— (11) 
sin2 ß 

Hence, on combining this equation with equations (6) and (7), it is 
apparent that the familiar compatibility equations 

Sp _ -27P   55 

bcx      sin 2 ß cX^ 
(12) 

Thermal imperfections usually appear in the form of intermolecular 
forces and molecular-size effects, and may be accounted for with 
additional terms in the equation of state.      
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and 

dC0 

27P   08 

sin 2 ß ÖC£ 
(13) 

also hold for the more general type of flow under consideration. These 
equations are basic, of course, to two-dimensional characteristics 
theory, and, as will he shown later, form a convenient starting point 
for developing simpler theories of two-dimensional supersonic flow. 

In order to apply equations (12) and (13), it is evident that the 
manner in which y  and ß or M are connected to p or 5 must he known. 
Relations implicitly connecting these variables at temperatures up to 
the order of 5000° R may be readily obtained from the results of refer- 
ence k by simply eliminating the terms therein accounting for thermal 
imperfections. Thus we have as a function of the local static tempera- 
ture and free-stream conditions 

7  = 7i 

1 + 
n -1 \ (e ,e/T 

T/ (ee/
T -if 

W  (e*/* -if J 

(1>0 

and 

IT = 
2/T, roMo2 ,    7± G T Y,e (    1 1        )] 

L      2           7i-l To'     T0   V   e
0/To   -i e*/T J\ 

(15) 

y  VT 

For isentropic flow along a streamline, the pressure is related to the 
temperature by the expression 

P_=   t(TN) 

PN       t(T) 
(16) 

where 

+ (T)  = 

AT 

e6/T  _! 

»0/T 

T     eS/T -i 

IS 

7-i-l 

(17) 
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If there is a shock wave in the flow,2 in particular a nose or leading- 
edge shock, then the following additional relations obtained with 
equations (8), (10), and (15) and the conditions for continuity of flow 
and conservation of momentum along a streamline through the shock are 
also required: 

% 

1 
2 « 

)+y (1+7N%
2)~ JSJS. (l+7oM02)+y (1+7NMN2)- f  (l+ToMo2) + h US 

N 

(18) 

sin2a = 
r0W 

- 1 

£°V-i 
(19) 

and 

tan 5 = 
tan a 7oV 

(20) 

(PN/p0)-l 
- 1 

Using the local static temperature as a parameter, the term 
2rp/sin 2 ß in equations (12) and (13) may now be evaluated with equa- 
tions (Ik)  through (17). Equations (l8) through (20) define the initial 
conditions downstream of a leading-edge or other shock wave in the flow 
field. Thus, equations (12) through (20) provide all the information 
necessary to calculate the flow about an airfoil by means of the method 
of characteristics. As described in detail in appendix A, the calcula- 
tion is of three general types; namely, (l) calculation of conditions at 
a point in the flow field between the shock and the surface; (2) calcula- 
tion of conditions at a point on the surface; and (3) calculation of 
conditions at a point just downstream of the shock. Case (l) entails 
the use of both compatibility equations, while case (2) entails the 
use of the compatibility equation for a second-family characteristic 

2If there are no shock waves, then the subscript W in equation (l6) 
can, of course, be replaced with the subscript o.   
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line in combination with the equation of the airfoil surface, and 
case (3) involves the compatibility equation for a first-family line 
in combination with the oblique shock equations. With the aid of the 
three general types of calculations the entire flow field about an 
airfoil can be built up numerically using a computing procedure working 
from the leading edge downstream. In cases where changes in the vibra- 
tional heat capacities with temperature are neglected, the calculations 
are of course simplified since y    of the gas can be considered con- 
stant, and temperature, pressure, and density ratios are simply the 
ideal gas functions of Mach number. 

Shock-Expansion Method 

General.- This method of calculating supersonic flow of an ideal 
gas at the surface of an airfoil is well known, entailing simply the 
calculation of flow at the nose with the oblique shock equations and 
flow downstream of the nose with the Prandtl-Meyer equations. Deter- 
mination of airfoil characteristics in this manner requires a small 
amount of time, of course, compared to that involved when the method of 
characteristics is used, hence the advantage of the former method. The 
questions arise, however, as to exactly what the simplifying assumptions 
underlying the shock-expansion method are, and what form the method 
takes (for calculative purposes) when the gas displays varying vibra- 
tional heat capacities. 

The matter of simplifying assumptions may perhaps best be con- 
sidered by employing equations (12) and (13), the basic compatibility 
equations. If these expressions are resolved into the streamline 
direction and combined, noting that 

&> 
ös      2 cos  ß  VäCi      dC£ 

and 

dB..        1        ( dB    |    55 
ds      2 cos ß V dCj.      ÖC£ 

there is then obtained the relation 

' dB/SV 
dp =   / d5/aca    \     2TP      55 

ds       \ dö/dCi    /sin 2 ß ds 

^ + £0 (2D 

(22) 

(23) 

dB/dC- 
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defining the gradient of p along s. If flow along streamlines down- 
stream of the nose is of the simple Prandtl-Meyer type, however, we 
have 

öp =     gyp     d& (21^ 
ds  sin 2 ß ös 

Hence it is evident that the requirement for this type of flow is 

d5/dC2 
< < 1 (25) 

Equation (25) is, of course, simply an approximate statement of a well- 
known property of Prandtl-Meyer flows; namely, that flow inclination 
angles are essentially constant along first-family Mach lines. It fol- 
lows from equation (12) that if equation (25) holds, then the pressures 
will also he essentially constant along these lines. It does not fol- 
low, however, that the Mach number will be constant, or for that matter 
that the first-family characteristic lines will he straight (as is the 
case for isentropic expansion flows about a corner). In fact, it may 
easily be shown that the Mach number gradient along Ci is proportional 
to the local entropy gradient normal to the streamlines, and that the 
Ci lines are curved according to the change in M. Thus we see that 
there is really only one basic assumption underlying the shock-expansion 
method; namely, disturbances incident on the nose shock (or for that 
matter any other shock) are consumed almost entirely in changing the 
direction of the shock.3 Within the limitations of this assumption it 
is evident that the method provides a relatively simple means for cal- 
culating the whole flow field about an airfoil, including effects of 
shock-wave curvature (see appendix B). In general, of course, the 
validity of this assumption can only be checked by comparison of calcu- 
lations using this method with those using the method of characteristics. 

The shock-expansion method for a calorically imperfect diatomic gas 
is readily deduced from the equations previously obtained. For example, 
flow conditions at the leading edge of an airfoil can be evaluated with 
the oblique shock-wave expressions (equations (l8) through (20)) and the 
expression for conservation of energy (equation (15)). The variation 
of flow inclination angle with pressure along the surface is then 

3It is interesting to note that the assumption of Thomas (reference 12) 
that pressure is a function only of flow deflection angle and entropy 
is equivalent to this assumption. It follows, of course, that the 
most general solution obtainable with Thomas's series representation 
of the pressure is that given by the shock-expansion method. 
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obtained by graphically integrating equation (2*0; namely, 

8s - 5N = P
N si^2_L dp (26) 

where the variables 7, p, and ß are evaluated using equations (ik) 
through (17), employing the static temperature as a parameter. When 
extreme accuracy is not essential, this rather tedious calculation can 
he avoided and a relatively simple algebraic solution of the flow down- 
stream of the nose can be employed.4 The details of this solution are 
presented in appendix C. In the special case of flow at high supersonic 
speeds about slender airfoils, the whole calculation becomes particularly 
simple and warrants special attention. 

Slender airfoils.- If it is assumed that the local surface slopes 
are small compared to 1 and in addition that the free-stream Mach number 
is large compared to 1, it follows that cr and ß are everywhere small 
compared to 1. In this case equation (2*0 takes on the approximate form 

dP 
d8 

= TPM (27) 
S 

Furthermore, if it is assumed that 7 is constant at an average value 
7a for a particular flow field (this assumption appears reasonable 
since in the temperature range up to 5000° R the change in 7 is less 
than 10 percent as shown in reference k), then the Mach number and 
pressure may be related by the simple expression 

7a-i 

M = %l-ir)27a (28) 

Equations (27) and (28) combine to yield the differential equation 

(?a+i) 

which readily integrates (between N and S) to the form 

4 The tabulated results of Noyes (reference 13) may also prove useful in 
this case for Mach numbers up to 3.  
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PS i-^v,)(i-!| 
27c 

ra-i (30) 

Now denoting 

7a"l 
%%   = f (MO

5
N) (3D 

and 

—   = g(MoÖN) po 
(32) 

there is obtained from the oblique shock equations, simplified to con- 
form with this analysis, 

f(Mo5N) = 
Mo2<%2 " 1 

/^♦^X^^-1) 
(33) 

and 

g(Mo5N) = ^a^N
2 - (?a-1) 

ra. + 1 
(3h) 

where 

Mo^N = ^~ MOSN + V 1 + H^i MQSN) (35) 

With equations (30) through (35) the pressures on the surface of an 
airfoil may easily he obtained. In terms of pressure coefficient we 
have 

7aMo' LVPoA%y 
(36) 

or 

^a          ] 
CP   =   "^~2 P      7aMo2 

g(Mo8N) l-f (MopN) fi 
5S\ 

"5w/J 
7a"1  -1 (37) 
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The advantage of these slender-airfoil expressions lies, of course, in 
their relative simplicity and thus the ease of calculation which is 
inherent to them. It may he noted in this regard that the functions 
f(MQ5N) and g(MQ&N) can be calculated once and for all with equations 
(33), (3*0, and (35), provided the variation of y& with ty,8N is known. 

This calculation has "been carried out for a constant value of y    equal 
to 1.4, and average values of y    assuming T0 = 500° R.

5 The results 
are presented in table I. 

It should also be noted that the slender-airfoil expressions of 
the shock-expansion method satisfy the hypersonic similarity law for 
airfoils first deduced by Tsien (reference lk).6 A necessary condition 
for the validity of these expressions is thus satisfied; however, the 
accuracy of the shock-expansion method, whether for slender airfoils or 
otherwise, remains to be investigated. Such an investigation is now 
undertaken with the aid of the method of characteristics. 

INVESTIGATION OF FLOW ABOUT AIRFOILS 
AND DISCUSSION OF RESULTS 

This study is divided into two parts: first, a consideration of the 
effects of Mach number assuming air behaves as an ideal diatomic gas; 
and second, a consideration of the combined effects of Mach number and 
gaseous imperfections, with principal emphasis in the latter regard 
placed on the caloric imperfections previously discussed. 

Ideal Gas Flows 

The effects of Mach number of primary interest here are, of course, 
those which result from interaction between the leading-edge (or other) 
shock wave and small disturbances originating on the surface of an air- 
foil. Some insight into the nature and extent of these effects can be 
obtained in the region just downstream of the shock wave without regard 

^or a given value of T0, TJJ, to the accuracy of this analysis, is the 
ideal gas function of MoSjj. Thus, knowing TJJ, y-§    can be determined. 

The average value of y    used is ya  = 7a(MQ5N) = —  -1 • 

6, This fact was employed by Linnell (reference 15) to obtain an expression 
for pressure coefficient equivalent to equation (37) for the case of 
constant 7, and to obtain explicit solutions for the lift, drag, and 
pitching-moment coefficients of several airfoils at hypersonic speeds. 
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for the shape of the airfoil producing the shock. To this end it is 

db/oCi    5p/dCi , ,„cU 
convenient to consider the ratio   =   (see equation (25)) 

o5/dC2    dp/oC2 
which may he termed "the disturbance strength ratio" since in the region 
under consideration it is a measure of the ratio of strengths of distur- 
bances reflected from the shock wave to disturbances incident on the 
wave. This ratio may be evaluated with the expression 

27NPN        ctp 
ds/dCx _   Vsin 2 ßjj      dS | N /      sin (ßN + 5N - a) 

ö5/öCa       f    27NPN    + d£ I     N      sin (% - 5N + a) 
\sin 2L      d6 L J 

(38) 

N 

which is easily obtained with the compatibility equations and the 
oblique shock-wave equations as shown in appendix D. This calculation 
has been carried out for Mach numbers from 3.5 to oo (y-§ = l,k)  and 
flow deflection angles approaching those corresponding to shock detach- 
ment (i.e., Mw Äl) and the results are presented in figure 1. It is 
evident that except near Mjj «* 1, the ratio is small (in absolute value) 
compared to 1 throughout the entire range considered - this observation 
also applies, of course, at lower supersonic Mach numbers. Thus it is 
indicated that almost all of an incident disturbance is generally 
absorbed in the shock wave, provided the air behaves like an ideal dia- 
tomic gas.7 This result is substantially the same, of course, as that 
which is assumed in deriving the shock-expansion method of calculating 
flows about airfoils, and therefore yields some credence in the method 
for high Mach number as well as low Mach number applications. 

As an over-all check on the shock-expansion method, surface pres- 
sure distributions calculated thereby are compared in figure 2 with 
those obtained with the method of characteristics for a 10-percent-thick 
biconvex airfoil (a = 0°) operating at free-stream Mach numbers of 3.5, 
5, 7.5, 10, 15, and oo. Predictions of the slender-airfoil approximation 
to the former method for high supersonic speeds are also shown. There 
is no apparent difference between the pressure distributions given by 
the method of characteristics and the shock-expansion method up to a 

7This result is contrary to that obtained by Lighthill (reference l6) 
who reports that for hypersonic flows, a disturbance is reflected 
from a shock wave with opposite sign but essentially undiminished 
strength. Lighthill's conclusion appears to be based on an incorrect 
evaluation of his results for the case of very high Mach numbers.  
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Mach number of 10. At Mach numbers of 10, and above, however, the 
latter method predicts pressures which are slightly low downstream of 
the nose, becoming progressively lower with increasing Mach number. 
This result would he deduced from figure 1 where it is observed that, 
at the Mach numbers under consideration, expansion waves incident on 
the nose shock are reflected back toward the surface as compression 
waves of relatively small but increasing strength with increasing Mach 
number. The effect of these waves does not become pronounced even at 
infinite Mach number (see fig. 2(f)) and the shock-expansion method is 
thus substantiated as being a reliable simplified method for predicting 
the flow about airfoils at high supersonic speeds, again, so long as the 
air behaves as an ideal diatomic gas. The further simplified slender- 
airfoil method also appears to be a good approximation over the entire 
range of Mach numbers,8 although, as would be expected from the assump- 
tions made in its development, it is in somewhat greater error than the 
shock-expansion method at the lower Mach numbers. 

The relative accuracy at high Mach numbers of the slender-airfoil 
method, linear and second-order potential theories may be seen in 
figure 3. As might be expected, the slender-airfoil method is more 
accurate than linear theory at both MQ = 5 and 15, and more accurate 
than second-order theory at MQ = 15. It is perhaps surprising to note, 
however, that at the lower Mach number of 5 the slender-airfoil method 
is also somewhat superior to the second-order theory. 

The pressure distributions of figures 2 and 3 have been employed to 
calculate the zero-lift drag of the biconvex airfoil, and the results of 
these calculations, along with additional predictions of linear and 
second-order theory, are shown in figure it-. Predictions of the shock- 
expansion method are, of course, in best agreement with those of the 
method of characteristics; while the slender-airfoil method, although 
slightly less accurate than the shock-expansion method, is apparently 
superior to both linear and second-order theory at Mach numbers above 3. 

The preceding findings verify that so long as the disturbance 
strength ratio is small compared to 1, the flow along streamlines is 
essentially of the Prandtl-Meyer type. If we choose, on the basis of 

these findings, a maximum absolute value for °&ßci    of Qi0g (note 

the maximum value of —-— for the cases presented in fig. 2 was 
dS/dC2 

8The hybrid expression for pressure coefficient obtained by Ivey and 
Cline (reference 5) gives reasonably good results also, although not 
as accurate as the slender-airfoil method at the higher Mach numbers 
under consideration. 
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approximately 0.06 at MQ = 00), the region in which the shock-expansion 
method is applicahle can readily he obtained from figure 1. The upper 
boundary line of this region is shown in figure 5 and it is evident 
that it lies only slightly below (about 1° in general) the line corre- 
sponding to shock detachment given approximately by the MJJ = 1.0 line. 
Almost the entire region of completely supersonic (ideal gas) flow is 
then covered by the method.9 (See shaded area of fig. 5.) 

The question naturally arises concerning the corresponding range 
of applicability of the slender-airfoil method. This question may be 
answered in part by comparing separately the predictions of the method 
for oblique shock flows and expansion flows with those of the exact 
oblique shock equations and Prandtl-Meyer equations. Such a comparison 
is shown in figure 6 in terms of the percentage error in the pressure 
coefficients predicted by the slender-airfoil method. As would be 
expected, this method does not exhibit good accuracy over the wide 
range of applicability of the shock-expansion method; however, it is 
indicated that it should predict pressure coefficients with less than 
10-percent error down to Mach numbers as low as 3 for,airfoils producing 
flow deflections up to as high as 25 . 

As a further check on the utility of the slender-airfoil method, 
the pressure coefficients on the 10-percent-thick biconvex airfoil have 
been calculated with this method and the shock-expansion method at a 
Mach number of 10 and angles of attack up to about 30°.10 The results 
of this calculation are shown in figure 7 (see fig. 2(d) for a = 0°) 
where it is seen that the agreement is reasonably good even at the 
highest angle of attack. This fact is reflected in figure 8 showing 
the force and moment coefficients for the airfoil as a function of angle 
of attack. Little difference is observed in the force coefficients as 
calculated by the two methods, while the moment coefficients display 
more pronounced but nevertheless small differences at the higher angles 
of attack. 

9If it is required as by Rand (reference 17) that the entire flow field 
be of the true Prandtl-Meyer type (i.e., that all flow properties be 
constant along first-family Mach lines and not just 5 and p), then 
the range of applicability of the shock-expansion method would be 
appreciably smaller. However, it has been shown that this restriction 
is not necessary. 

10These conditions are within the range of applicability of the shock- 
expansion method as defined in figure k;  hence the use of the method 
as a base of comparison seems justified. Since the shock-expansion 
method is far less tedious to apply than the method of characteristics, 
it will be employed as such a base in subsequent calculations whenever 
the conditions being investigated have been determined to be within 
its range of applicability. 
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Prom these and previous considerations, the ranges of applicability 
of the shock-expansion and slender-airfoil methods for ideal supersonic 
gas flows are reasonably well established. It remains now to determine 
the manner and extent to which gaseous imperfections in the flow at 
higher supersonic speeds may alter these ranges, and the reasons 
therefor. 

Imperfect Gas Flows 

As a first step toward investigating the effects of gaseous imper- 
fections on the high Mach number flows under consideration, it is con- 
venient to extend our consideration of the disturbance strength ratio 

-—-—. It is recalled that when air exhibits a constant value of y 
hbßC2 ' 
equal to l.k  (the value for an ideal diatomic gas), the disturbance 
strength ratio is small at arbitrarily large Mach numbers, provided the 
flow deflection angles are not too close to those for shock detachment. 
One of the most important effects of gaseous imperfections is, however 
to decrease 7 of the disturbed air below this value due to the excita- 
tion of additional degrees of freedom (e.g., vibrational) in the mole- 
cules at the high temperatures encountered at high Mach numbers. Indeed 
at arbitrarily high Mach numbers it might be expected that 7 of the  ' 
disturbed air would approach 1, since the number of degrees of freedom 
may effectively become very large (see, e.g., references 3 and 6). In 
this case, however, the extent of the disturbance flow field is decreased 
+° 1 t7T al thG  surface of the *ody which is negligibly thin compared 
to that for the case of ideal gas flow. Thus it is apparent that signi- 
ficant changes in the flow about airfoils at high Mach numbers may 
result from decreases in 7 of the disturbed air; hence the effects of 
such decreases on the disturbance strength ratio would appear to warrant 
attention. 

A detailed analysis of these effects is impractical at the present 
time due to the limited range over which the variation of 7 with tem- 
perature is known. However, some knowledge of these effects can be 
gamed by repeating the ideal gas calculations for constant values of 
7W between l.k  and l.O.11 Such calculations have been carried out at 

11 
Since the enthalpy is negligibly small compared to the mass kinetic 
energy of the undisturbed fluid at the high Mach numbers of interest 
and, hence, 7 of this fluid does not influence the flow, this approach 
corresponds to employing an average value of 7 for the disturbed 
fluid. Since only flows of dense air are considered here, heat- 
capacity-lag phenomena are neglected (see references 5 and 6). 
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do/aCi 
infinite Mach number since in this case   has its maximum value 

Ö5/ÖC2 
for a given 7-^, and the results are presented in figure 9. It is seen 
that except near shock detachment, the disturbance strength ratio 
increases with decreasing 7^, approaching 1 as 7^ approaches 1. This 

increase is slow at first; for example, the value of —J-—— is still 
Ö6/ÖC2 

less than 0.1 at 7N = 1.3. It might therefore be expected that the 
shock-expansion method would continue to apply with reasonable accuracy 
so long as 7 of the disturbed flow is not appreciably less than this 
value. This point has been checked with the methods developed pre- 
viously for analyzing the flow of a calorically imperfect diatomic gas 
at local air temperatures up to about 5000° R (note 7 has a value 
only slightly less than 1.3 at this temperature). In particular, the 
pressure distribution on the lower surface of the biconvex airfoil at 
M0 = 10, a=19.9°, and TD = 500° R (T^llOOO

0 R at leading edge) has 
been calculated with both the method of characteristics and the shock- 
expansion method.12 The results of these calculations are presented in 
figure 10 and it would appear that the conclusions drawn from figure 9 
pertaining to cases where 7N is of the order of 1.3 or greater are 
substantiated. Pressures in the expansion flow about the upper surface 
are not influenced (due to the low temperatures) by caloric imperfections 
and hence are the same as shown in figure 7(b). 

Shown also in figure 10 is the pressure distribution obtained by 
the shock-expansion method for an ideal gas (7^ = 1.^). It is apparent, 
on comparing this pressure distribution with the other distributions, 
that although the effect of caloric imperfections on the disturbance 
strength ratio is small, the pressures are appreciably reduced by the 
increase in specific heats. The extent of this reduction is more com- 
pletely illustrated in figure 11 where the lower surface pressure distri- 
butions on the biconvex airfoil are presented for Mo=10 and To=500° R, 
at a = 0°, 10°, 19.9°,. and 30°. As one might expect, the reduction in 
pressures increases with angle of attack (due to the corresponding 
increase in static temperature of the disturbed air). The pressure 
coefficients calculated with consideration for the imperfections in the 
gas are less on the lower surface (up to 6 percent at the leading edge 
and 15 percent at the trailing edge) than those calculated assuming the 
gas behaves ideally. The upper-surface pressures are again unaffected 

12For added ease of calculation the expansion method of appendix C was 
employed. This method is also employed in all subsequent calculations 
of this type since it has been found to yield results differing by 
less than 1 percent from those obtained by the more tedious graphical 
integration method. 
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by the caloric imperfections of air in all the cases presented (except 
at a = 0 ) since this surface experiences lower pressures and hence 
lower temperatures. They are therefore the same as shown in figure 7. 
Shown also in figure 11 are the pressure distributions calculated with 
the slender-airfoil method for y = y&.    <rhe  accuracy of this simpli- 
fied method is substantially the same as was previously observed for 
the corresponding method in the case of ideal gas flows, although the 
local error may be greater than the reduction in pressure coefficients 
due to the caloric imperfections of air. This error is somewhat com- 
pensating, however, in its effects on the force and moment coefficients 
as will be seen. ' 

The force and moment coefficients, corresponding to the lower- 
surface pressure distributions shown in figure 11 and the upper-surface 
distributions of figure 7 are presented in figure 12. The reduction in 
the lower-surface pressures leads, of course, to a general reduction in 
all three coefficients (up to about 10 percent for a = 30°). The 
slender-airfoil method again predicts these coefficients with surprising 
accuracy. 

In order to further assess the accuracy of the slender-airfoil 
method some additional calculations were carried out for the biconvex 
airfoil at a = 0° and MQ = 20 and 30. The pressure distributions for 
these cases were calculated by the shock-expansion method, slender- 
airfoil method (7 = ya)}  and slender-airfoil method (7 = j±).    These 
results are presented in figure 13 and it is observed that the use of 
7a rather than y±    improves the accuracy of the slender-airfoil method. 
The extent of this improvement in the case of drag coefficient is shown 
in figure Ik  - it would appear that predictions of the slender-airfoil 
method (7 = 7&)  and shock-expansion method are in as good agreement as 
for ideal gas flows (see fig. h).    On the basis of these and previous 
results, it may be concluded then that not only does the shock-expansion 
method retain its range of applicability when air exhibits caloric 
imperfections provided 7 of the disturbed air is not appreciably less 
than 1.3, but also the slender-airfoil method (7 = 7J retains its 
range. <x 

It would be surprising indeed, however, if this conclusion con- 
tinued to apply as 7 g/*he disturbed fluid approached 1 since, as 

discussed previously,     °x    is not small compared to 1 in this case, 
d8/dc2 

but would appear, in fact, to approach 1. This matter may be investi- 
gated in the same manner as the effect of 7N on the disturbance 
strength ratio was investigated, namely, by using the ideal gas relation- 
ships in combination with appropriate values of 7. 
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The limiting case of infinite free-stream Mach number and y -  1.0 
(for the disturbed fluid, see footnote 11) has already been investigated 
by Busemann (reference 18) and more recently by Ivey, Klunker, and Bowen 
(reference 19). In this case, as pointed out previously, the shock wave 
emanating from the leading edge remains attached to the surface down- 
stream of the leading edge (this is easily verified with the oblique 
shock-wave equations) and the disturbance flow field is confined to an 
infinitesimally thin layer adjacent to the surface. In addition, the 
velocity along a streamline downstream of the shock is constant, as may 
easily be shown with the compatibility equations. Surface pressures 
therefore become a simple function of airfoil geometry, 

d6q rx 

Cp = 2 sin
2 5S + 2 cos 5S —-=. /  sin 5sdx (39) 

varying, to a first approximation, directly with the square of the com- 
ponent of free-stream velocity normal to the surface (i.e., the flow is 
approximately of the Newtonian corpuscular type). With this theory 
then, and the method of characteristics, we can get an idea of both the 
extent to which extreme changes of y    from l.k  toward 1 will alter 
surface pressures, and the accuracy with which the shock-expansion 
theory predicts the alterations. To this end, figure 15 is presented 
showing the pressure distributions about the biconvex airfoil at 
MQ = oo as calculated by the several methods for different values of y. 
It is observed that, whereas the shock-expansion method agrees very 
closely with the method of characteristics for y = l.k,  there is a 
large difference at y  = 1.05. This, of course, is precisely what one 
would expect from the previous discussion of the disturbance strength 
ratio. On the other hand, if the two characteristic solutions and the 
Busemann method are considered in order of decreasing y,   it is indi- 
cated that the characteristics solutions approach the Busemann theory 
as 7 approaches 1. For y =  1.0 and MQ = °° the shock-expansion 
method, in turn, predicts a discontinuous pressure distribution with a 
pressure coefficient equal to that of the Busemann theory at the leading 
edge but a pressure coefficient of zero at all points downstream of the 
leading edge. Hence it may be concluded that when the free-stream Mach 
number approaches infinity and y    approaches 1, the Busemann method 
rather than the shock-expansion method for calculating the flow about 
airfoils should be employed. 

CONCLUDING REMARKS 

The flow about curved airfoils was investigated analytically at 
high supersonic speeds first assuming air behaves as an ideal gas, and 
then assuming air behaves as a thermally, although not necessarily 
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calorically, perfect gas.  (Caloric imperfections had previously been 
observed to be of predominant importance in free flight, at least for 
local air temperatures up to the order of 5000° R.) It was found that 
so long as air exhibits no imperfections (i.e., behaves as an ideal 
diatomic gas) small disturbances originating on the curved surface of 
an airfoil are almost completely absorbed in the shock wave emanating 
from the leading edge (or any other location on the surface), provided 
the flow deflection angles are not too close to those corresponding to 
shock detachment. This result is essentially independent of Mach number 
and is consistent with the early calculations of Crocco concerning sur- ' 
face pressure gradient at the leading edge of an airfoil. It was con- 
cluded that in ideal gas flows the shock-expansion method for determining 
ilow conditions at the surface of an airfoil would apply with good 
accuracy at arbitrarily high Mach numbers. This conclusion was verified 
by the excellent agreement found between pressure distributions on a 
10-percent-thick biconvex airfoil at 0° angle of attack calculated with 
the shock-expansion method and the method of characteristics  It was 
further shown that the former method can be easily employed to construct 
the entire flow field about an airfoil in a manner that would account 
for shock-wave curvature and entropy gradients resulting therefrom. 

A high Mach number approximation to the shock-expansion method for 
thin airfoils was also investigated, and was found to apply with good 
accuracy at Mach numbers above 3 and flow deflection angles up to 25°. 
The essential feature of this slender-airfoil method is, of course, its 
simplicity, and for that reason it may prove useful for some engineering 
purposes. ^ 

Effects of caloric imperfections were first investigated qualita- 

lTlLTT^nTinVhe  redUCti°n in the ratio of sPecifi" heatHro" t      toward 1.0. It was found that as the ratio decreased, the extent 
limits ?iStUr?nCeS reflected f-m a «hock wave increased  l!Tthe 
limit as the ratio approached 1, the reflection was complete, and the 

rS o IirnntCr ^^ t0 ^ 8Urface °f the airfoi^ S° *£ as the 
less than ^*f;creJB%aBP«clably below 1.3, however, it was found that 
itllv lOpercent of a disturbance was reflected; hence the simple 
shock-expansion method might be expected to continue to apply, ibis 
natter was checked quantitatively for the biconvex airfoil with the aid 
SmeVf T XZf m!th0d °f characteristics including effects of caLSc 
imperfections (up to local air temperatures of the order of 5000° H 

thTtL°nshotk ° " rati° °f+f
ecific teat* of about 1.3). ifwt Jound 

ideal SL 5?  eXpanS^n,meth°d ™S sutst^tially as accurate as for 
ideal gas flows provided it was also generalized to include effects of 

heateratSrSft°nS-, ^JS*^^ effeCt °f the red*ctio* in *pec?f£ 
lit ™f  T    redUCe the Pressul,e coefficients below their ideal 
ToefAllTnt^™    mUCh^aS

+
15 PerCent' 'me ration in force and moment 

i?w2 foul ^Vr^f ?mller' b6ing ab°ut 10 *ercent' Similarly it was found that the slender-airfoil method, modified to employ an 
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average value of the ratio of specific heats for a particular flow 
field, exhibited essentially the same accuracy as the analogous method 
for ideal gas flows. Thus it is indicated that the generalized shock- 
expansion method and its slender-airfoil counterpart can he applied 
with good accuracy up to very high free-flight Mach numbers. If the 
flow deflection angles are less than about 12°, these Mach numbers are 
of the order of the so-called escape Mach number (i.e., Mach numbers 
as high as 30 to 35). 

At even higher Mach numbers where the ratio of specific heats is 
expected to decrease appreciably below 1.3, and in fact perhaps to 
approach 1, it was not possible to obtain an accurate check on the pre- 
viously discussed qualitative considerations. It was undertaken, how- 
ever, to compare the pressure distributions on the biconvex airfoil 
predicted by the Busemann method (for the limit of the ratio Of specific 
heats approaching 1 and Mach number approaching infinity) with those 
predicted by the shock-expansion method and the method of characteris- 
tics at infinite Mach number (employing a constant ratio of specific 
heats of 1.05). As was expected, the shock-expansion method was in 
very poor agreement with the method of characteristics, whereas the- 
Busemann method was in relatively good agreement. It is therefore 
indicated that for extremely high Mach numbers (something in excess of 
the sea-level escape Mach number) the Busemann theory may apply. 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif., Jan. 9,  1952 
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APPENDIX A 

METHOD OF CHARACTERISTICS FOR WO-DIMENSIONAL FLOW 

OF A CALORICALLY IMPERFECT GAS 

In the application of the method of characteristics for a calori- 
cally imperfect diatomic gas to the particular problem of analyzing the 
flow about curved two-dimensional airfoils, many of the calculations 
are identical to those encountered in the solution of any problem where 
characteristics theory is employed. Since the details of these calcu- 
lations are well known and well reported (see, e.g., reference ll), 
they will not be repeated here. 

A lattice-point system with an initial-value, numerical computing 
procedure will be used. The form of the compatibility equations to be 
employed was developed previously;13 however, it is convenient for pur- 
poses of calculation to substitute the pressure ratio, v/%,  into these 
equations and to rewrite them as difference equations. Equations (12) 
and (13) are thus reduced to the following forms 

(p/l0)c - (p/q0)A = -XA(5C - 8A) (Al) 

and 

(PALO)C - (PALQ)B = ^B (8C - &B) (A2) 

where 

sin 2ß (A3) 

It is also convenient to employ several reference curves. These curves 
can be divided into two groups. The general reference curves consist of 
7  and *(T) as a function of temperature, T. Equations (lk)  and (17) are 

This form of the compatibility equations (in p and 8 coordinates) 
was also used in obtaining some of the characteristics solutions for 
ideal gas flows. The majority of these solutions were carried out, 
however, with the compatibility equations in ß, 5, and entropy 
coordinates, since it was found that greater accuracy was usually 
obtained for a given net size. In general, the net size employed 
yielded pressures at from 30 to 35 surface points on an airfoil with 
a maximum error in the corresponding pressure coefficients equal to 
less than 1 percent of the pressure coefficient at the leading edge. 
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used to determine these curves. A second set of shock-wave reference 
curves consisting of p/q0, cr, and 5 as a function of temperature, T, 
are determined by use of equations (l8) through (20) - the values of TQ 
and MQ are presumed known. 

In the computations three types of points are encountered. These 
are (l) a point in the flow field between the shock wave and the air- 
foil surface, (2) a point on the airfoil surface, and (3) a point just 
downstream of the shock wave. Each one of these types of points 
requires a slightly different computing procedure and they will be con- 
sidered in order. 

Point in the Flow Field Between the Shock Wave 
and the Airfoil Surface 

Figure 16(a) shows a schematic diagram of the system of points to 
be considered in these calculations. Point C is the unknown point at__ 
the intersection of the first-family characteristic line passing through 
point A and the second-family characteristic line passing through 
point B. Six quantities are known at both points A and B, and the 
problem is to calculate these same quantities at point C. These quanti- 
ties are x, y, S, v/0o*  T> and %• The first five quantities are of 
obvious significance. The sixth, %, is defined as the static tempera- 
ture, just downstream of the shock wave, on the streamline passing 
through the point C. 

The physical coordinates of the point C (xc, yc) may be determined 
by standard procedures such as those given in reference 11. In order to 
determine the quantity 8c, it is necessary to solve equations (Al) and 
(A2) simultaneously; thus 

6 = ^A SA + % 5B + (PA*O)A - (P/1Q)B        {Ak) }C xA + xB 

Equation (Al) or (A2) is then used to obtain (p/g^ • 

There remains only the problem of determining Tc and T«  at 

point C. The temperature TN  is obviously constant along the stream- 

line through C. This quantity may therefore be calculated in the same 
manner as the entropy is calculated in similar flow fields for ideal gas 
processes (see, e.g., reference 11). Furthermore, since the flow along 
streamlines downstream of the shock wave is isentropic, equation (l6) 
may be applied in the form 
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(A5) 
N, C 

The pressure, (v/%)       ,  is defined in a manner analogous to Tw„ , and 

may thus be determined using the shock-wave reference curves and the 
known value of TNQ . Similarly, *(%c) may be determined from the 

general reference curves. The only unknown in equation (A5) then is 
t(Tc) which may now be calculated. Once f (Tc) is determined, Tc may 
be determined by again using the general reference curves. All six 
quantities, xc, yc, 8C, (p/qQ)c , Tc, and Tw  have now been determined. 

Point on the Airfoil Surface 

Figure 16(b) shows a schematic diagram of the points to be con- 
sidered in these calculations. The physical coordinates of point C, 
(XC> Vch  are first calculated by solving simultaneously the equation 
of the second-family Mach line passing through point B and the equation 
of the airfoil surface. When xc and yc have been determined, 8r is 
readily obtained from the equation of the airfoil surface. Equation (A2) 
is then applied to determine (p/q0) . 

Since the airfoil surface is a streamline,TNC is constant along the 

surface and may be evaluated at the leading edge. The temperature, Tc, 

may then be determined using equation (A5) and the previously described 
procedure. All six quantities, xc, yc, (p/q0) . 5C, Tc, and %, , are 
thus determined. L u 

In the special case of the first point on the airfoil surface 
downstream of the leading edge, the pressure ratio is calculated using 
the procedure of reference 9. This procedure is easily shown to be 
applicable to calorically imperfect gas flows providing the oblique 
shock-wave equations of the present paper are employed. 

Point on the Shock Wave 

Figure 16(c) shows a schematic diagram of the points to be con- 
sidered in these calculations. The physical coordinates of point C 
(XC> yc) are first calculated by solving simultaneously the equation 
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of the first-family Macti line passing through point A and the equation 
of the shock wave linearized at point D, the last known point on the 
wave. The variation of p/q0 with 5 along the shock wave may be 
approximated "by the relation 

(P/0C - <P/«O>D - ^ |  <SC " SD) 

In this equation 

C 

a(pALo) 
<3S 

(A6) 

is the rate of change of    p/q0    with    5 
N 

along the downstream side of the shock wave evaluated at point D. 
Because of the complicated nature of the shock-wave equations, it is 

d(p/q0) 
generally easier to evaluate 

d& 
graphically or numerically 

N 
from the shock-wave reference curves. Equations (AL) and (A6) are 
solved simultaneously for 5Q , thus 

XA5A + 

5„ = 

*(p/q0) 

d5 N 
8D + (p/cio). - (P/O D 
a(p/qp) 

d8 

(A7) 

N 

When 8c has "been calculated, TQ , and in turn (p/q,-,)« , may be deter- 

mined from the shock-wave reference curves. Since point C in this case 
is just downstream of the shock wave, TQ and TJJ  are identical. 

The six quantities, XQ, yc, (p/q0) , Sc, Tc , and Tw  have now been 

determined. 
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APPENDIX B 

SHOCK-EXPANSION METHOD FOR CALCULATING THE FLOW 

FIELD ABOUT AN AIRFOIL 

An initial value procedure which is similar to, although markedly 
simpler than, that associated with the method of characteristics may 
be employed to carry out this calculation.14. To illustrate, consider 
the sketch: 

M0 

First family (Cf) Mach fine 

Shock wave 

Streamlines 

Airfoil surface 

With the oblique shock-wave and expansion equations, all fluid proper- 
ties at points M, A, C,. and so forth on the airfoil surface may he cal- 
culated in the usual manner.  If the point A is chosen close to M, the 
first-family (Cx)  Mach line connecting A to point B on the shock wave 
may be considered straight and inclined at an angle to the free-stream 
direction equal to ßA + 8^.  Similarly, the segment MB of the shock 
wave may be considered straight and inclined at the angle crM to the 
stream direction.  Thus the point B in the flow field^may easily be 
determined.  The direction of BD (a segment of the streamline passing 
through B) is the same as the tangent to the surface at A, and the 
attitude of the segment BE of the shock wave is fixed by this direction. 
The locations of points D and E in the flow field are thus fixed once 
point C is chosen.15 The construction of the remainder of the flow field 
follows in a similar fashion. Having determined the shapes of the 
streamlines, the fluid properties along these lines are, of course, 
determined in the same manner as those along the surface. 

I4it is clear, of course, that an "average value" procedure could also 
be employed. Such a procedure would, in fact, be the more desirable 

l5 in some cases, since a coarser net may be used. 
The point C should, of course, be chosen close to A. 
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It is important to note that this method is applicable to the 
determination of the flow not only in the region adjacent to the air- 
foil (whether the surface be concave or convex) but also in the region 
downstream of the airfoil; hence it may, for example, prove useful in 
downwash studies and the like. 
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APPENDIX C 

APPROXIMATE SOLUTION FOR PRANDTL-MEYER FLOW 

OF A CALORICALLY IMPERFECT GAS 

The following solution is obtained with an analysis similar to 
that used in Meyer's original paper (reference 20). A schematic dia- 
gram of the subject flow field is shown in figure 17. It is evident 
that the change in flow-inclination angle for Prandtl-Meyer flow can 
be written as follows 

5N - 5 = (ßN - ß) + (uN - u) (Ci) 

Since the flow is isentropic, a given value of the local pressure will 
determine the Mach angle, ß. The problem then is to evaluate the 
angle, u>. To this end the velocity components tangential and normal 
to the first-family Mach lines may be expressed in the usual manner in 
terms of a potential cp, thus 

cXp 
- (C2) 
or 

u = 

a = 
1 d<P 

r  £ ™ 
It is clear, however, that these components are functions of w only; 
hence it is convenient to define a new velocity potential which is a 
function of to alone. Such a potential is 

*M = ; (Ck) 

The velocity components may then be written in terms of this new 
potential. 

u = <J> (c5) 

a = *u (C6) 

The resultant velocity is given by the expression 

Y2 =  «a + 9S (c7) 
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Equation (15) for conservation of energy may be written in terms of the 
local temperature as follows: 

V2 + 2 (J±-XT + 2W ( e/T v 
V7i-ly        Ve

e/T-1^ 
A" (C8) 

The constant, A, is evaluated at the conditions existing upstream of the 
expansion region; namely. 

A2 = ^+ ( T^I)RTN + 2RTw (" 9/TN 
e^-l 

Equations (C7) and (C8) are then combined to yield 

$2 + <S>u2 = _2RT  fj^+     SZSLV A* 

(C9) 

(CIO) 

It was shown previously, however, that 

a2 = 7ET (Cll) 

Equations (C6), (CIO), and (Cll) may therefore be combined to obtain 
the following relationship: 

$2 + ^2 1 + 7± 

V1 
0/T 

a0/T_i 
A2 (C12) 

or 

$2 + ^ ^ Zili +  
2 

7±-l  7±- 
I±_1+  71-1   f7± ^  0/T 

7±     \7  /e0/rr-l 
(C13) 

From the imperfect gas relationship for 7 we have 

Zi 
7 

1 + (7±-l) 
,e/T 

T/  (e0/T-l)S 

1 + 7j-l 

?i 

»0/T 

(e0/T-l)2 

(C14) 
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Substituting this relation into equation (C13) there is then obtained 

*2 + *</ 
7i+1 + JL F (  £ 

L 7i- T 
Ac (C15) 

where 

F( £ 
T 

0/T 
1 + (7,-D 

(e/T). >0/T 

(e0/T- 

(ee/T-p 
1+ 

0/T 

(e^-l) 

■1) 
1 + IZi^l) (0/T)

2e0/T 
7i   (e0/T-l)2 

(C16) 

Now 

7T 
7i0  7iR0 

(C17) 

For every value of T/0 there is thus a particular value of aa/71R0. 
The function F(0/T) is therefore uniquely determined for any value 
of a2 since y±R9    is of course a constant. With this point in mind, 
let ' 

F(0/T) = G(a.2/7lW) (ci8) 

Figure 18 shows G^/y^e)  plotted as a function of aß/y±m.    This 
curve is approximated with the following simple relation: 

G(a2/7iR0) = 0.38 -Sl_ + o.Tl 
7iR0 

0.14 
-/y±Re 

for 0.18 <  a 
7±R0 

< 1.0 

and 

(ciy) 

G(a2/7±R0) = 0 

for 0 < a2 

7iR0 
< 0.18 

(C20) 
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Equation (C19) is also plotted in figure l8 to show the accuracy of this 
approximation.  Consider first the case when G is given by equa- 
tion (C19) which is written in the form 

Where obviously 

G(a2/7iR9) = |a
2 + u + TJ 

I = 0.38/7iR9 

u = 0.71 

T] = -0..U '(7±R0) 

Bf 
(C21) 

(C22) 

Equation (C21) is substituted into equation (C15) and with equations (Cl8) 
and (C6) the following expression results: 

äf4 + 
7±    w 

(71+1   , 2M. \ 

V 7i-l  7± J 
(C23) 

In order to simplify this equation the following substitutions are made: 

Dc fli!1 + 2uf 
\7i-l      7±J 

+ -   I (AJ 

7± 7± 
Tl) (C2lt) 

sin2v 

8J_ 
74 

l2       2 ^      A-  - ^ Ti 

sin2n 
7i 

D2 

(C25) 

(C26) 

and 

$,,2 Dg   COSgT   (Tg))2 

8 
^-   6 

(C27) 
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Equation (c23) then reduces to 

on„4 T /_ u . ^ c°s V   P  .  ,2 k  sin2 T  4 sin2 v cos T (TU) +  _  cos2 T (TJ
2
 + v = 0 (C28) 

D D2       D2 

This equation is solved for TU, thus 

Tw = /- 
2  1 
D COS T 

(cos T - cos v)1/2 (C29) 

or 

COS T dT du 
(COS T - COS v)1/2 

(C30) 

This expression is readily integrated to obtain the following equation 
relating u to the local velocity: 

u UN = -/D" -I 2 F(k,z) - F(k, zN)J}  (C31) E(k,z) - E(k,zN) 

where 

E elliptic integral of the second kind 

F elliptic integral of the first kind 

k sin — (modulus) 

z sin"1 (^lB-lA ) (amplitude) 
v sin v/2 / 

The procedure for calculating corresponding values of the pres- 
sure p, and the deflection angle, 8, is straightforward vith the aid 
ol the preceding equations and may be summarized as follows: 

1. Calculate A2, equation (C<?) 
2. Calculate D2, equation (C2^) 
3-  Calculate V, equation (C25) 
h. Assume a value of T, less than Tw 
5. Calculate p, equations (l6) and (17) 
6. Calculate V2, equation (c8) 
7. Calculate 7, equation (Cl^) 
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8. Calculate a2 (or $</), equation (Cll) 
9. Calculate M and, in turn, ß from V and a 

10. Calculate u2 (or $2), equation (C7) 
11. Calculate T, equation (C26) 
12. Calculate to , equation (C3l) 
13. Calculate 5, equation (Cl) 

This procedure is followed so long as the quantity a^/y^RB    is 
greater than 0.l8.  (This is equivalent to the temperature being greater 
than approximately 1000° R.) For values of a.2/y±He    less than or equal 
to 0.18 (or temperatures less than about 1000° R) G is set equal to zero 
(see equation (C20)). In this case equation (C15) reduces to the same 
form as for an ideal gas, and therefore the well-known ideal gas rela- 
tionships can be used. 
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APPENDIX D 

EVALUATION OF THE DISTURBANCE STRENGTH RATIO 

Consider the element of an oblique shock wave shown in the accom- 
panying sketch 

J9- 8+a 

/3+8-0- 

it is evident that the ratio cfc/dCi 
is a measure of the ratio of 

Ö5/ÖC2 
strengths of reflected and incident disturbances, respectively, since 
all disturbances incident on the wave between points,D and C must 
travel along first-family characteristics which cross C2    between 
D and A, while all disturbances reflected from the shock wave in this 
region must travel along second-family characteristics which cross Cx 

between A and C.  This ratio, termed the disturbance strength ratio, 
may be evaluated locally just downstream of the shock wave in the fol- 
lowing manner.  The points D and C are chosen sufficiently close 
together so that the difference in pressure between these points may 
be written 

öp       öp 
Pc-PD = §^+a-£-ACl (Dl) 

or 

PC "PD 
dp 

d5 
(8C-8D) (D2) 
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where -rr- do N 
is the rate of change of pressure with flow deflection 

angle on the downstream side of the wave. Wow the change in deflection 
angle between D and C is given by the relation 

V^ = 7Jrz ">* + !l ACi (D3) 

Thus equations (D2) and (D3) combine to yield 

ÖS 
PC"pD - dS 

/öS 

N\dc2 
AC2 + ^-ACl 0*) 

But the compatibility equations (equations (12) and (13)) combine with 

equation (Dl) to give *> 

PC-PD 
= ZygPs    /as_^ 

sin 2ßN \ ciC2   ^ ' ^Cx 
ACn (D5) 

Equating the right-hand members of this.and the previous expression and 
rearranging, there is then obtained 

/^
2
^NPN  _ dp_ 

Ö5/ÖC! _ \ sin 2ßK  d5 

Ö0/ÖC2 

N 

27NpN  dp 
+ 

sin 2ßN d5 N 

VAC, / 
(D6) 

AC£ The ratio —- follows from the sine law, however!;  thus the (disturbance 
AC! K 

strength ratio is given by the relation 

S5/dCi 

d5/dC2 

2^W _ dp 
sin 2ßN  3B 

27#N ■  dp 
in 2ßK.  d& 

K/ . sin (ßjj+%-0) 

sin (ßjj-Dj^+a) 

N 

(D7) 

which holds for both ideal and calorlcally imperfect gas flows. 
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If the shock wave is attached to the airfoil at the leading edge 
(or more properly if MN>1), this expression may be used with equa- 
tion (23) to determine the surface pressure gradient at that point- A 
calculation analogous to this for ideal gas flows has already been car- 
ried out by Crocco, Schaefer, Munk and Prim and others as discussed pre- 
viously. ^ 
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TABLE I.- TABLE OF FUNCTIONS FOR SLENDER-AIRFOIL METHOD 

'M Fw 
7 = 7± 7 = 7a  (To = 500°R) 

MoDN 

g(M05N) f(M08N) ya S(M0&N) fOJoBf,) 

0 1.000 0 1.400 1.000 0 
-05 1.072 .009901 l.4oo 1.072 .009897 
.10 1.148 .01961 i.4oo 1.149 •01959 

•15 1.230 .02912 1.400 1.230 .02909 
.20 1.316 .03845 l.4oo 1.316 .03841 

.25 1.406 .04760 i.4oo 1.4o6 .04755 
• 30 1.502 .05656 1.399 1.502 .05649 

• 35 1.6ok .06537 1.399 1.603 .06524 

.4o 1-710 .07393 1.399 1.710 .07380 

.45 1.823 .08235 1.399 1.822 .08220 

•50 1.941 .09058 1.399 1.940 .09o4o 

• 55 2.065 .09863 1.399 2.064 .09841 
.60 2.195 .1071 1.399 2.194 .1062 

.65 2.332 .1142 1.399 2.330 .1139 
• TO 2.474 .1217 1.399 2.473 .1213 

• 75 2.624 .1290 1.398 2.622 .1286 

.80 2.780 .1362 1.398 2.777 .1356 

.85 2.943 .1431 1.398 2.939 .1425 

.90 3.112 •1499 1.398 3.108 .1492 

•95 3.289 .1565 1.398 3.284 .1557 
1.00 3-473 .1630 1.397 3-466 .1620 
l.i 3.862 .1753 1.396 3.852 .1740 
1.2 4.280 .1869 1.396 4.266 .1853 
1-3 4.728 .1978 1.395 4.708 .1958 
1.4 5.206 .2064 1.393 5-179 .2056 

1-5 5.715 .2178 1.392 5.679 .2147 
1.6 6.256 .2269 1-391 6.207 .2232 

1-7 6.827 .2354 1.389 6.764 .2309 
1.8 7.431 .2433 1.388 7.349 .2381 

1.9 8.066 .2507 1.386 7.962 .2447 
2.0 8.734 -2577 .1.384 8.605 .2508 
2.1 9.411 .2646 1.382 9.274 .2564 
2.2 10.17 .2702 1.380 9-973 .2616 

2.3 10.93 .2759 1.378 10.70 .2664 
2.4 11.73 .2812 1.376 11.46 .2709 

2-5 12.56 .2862 1.374 12.24 .2749 
2.6 13-42 .2908 1-372 13.06 .2788 

2.7 14.32 .2951 1.370 13.90 .2823 
2.8 15.25 .2992 1.369 14.77 .2856 

2.9 16.21 .3030 1.367 15.68 .2887 
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TABLE I.- CONTINUED 

Mo5N 

3.0 
3-2 
3.4 
3.6 
3-8 
4.0 
4.2 
4.4 
k.e 
4.8 
5-0 
5.2 
5-4 
5.6 
5.8 
6.0 
6.2 
6.4 
6.6 
6.8 
7-0 
7.2 
7.4 
7.6 
7.8 
8.0 
8.5 
9.0 
9-5 

10.0 
10.5 
11.0 
11.5 
12.0 
12.5 
13.0 
13-5 
14.0 
14.5 
15-0 

7 = 7-i 

g(Mo5N) 

17.21 
19.30 
21.52 
23.88 
26.38 
29.00 
31.76 
34.65 
37.68 
4o.84 
44.14 
47.56 
51.13 
54.82 
58.66 
62.62 
66.73 
70.96 
75-33 
79.83 
84.47 
89.24 
94.15 
99.19 

104.4 
109.7 
123.5 
138.2 
153.8 
170.2 
187.4 
205.4 
224.3 
244.1 
264.7 
286.1 
308.3 
331.4 
355.4 
380.2 

f(M05N) 

y = y& (T0 = 5OO°R) 

0.3066 
.3130 
.3187 
.3237 
.3280 
.3322 
.3358 
.3389 
.3418 
.3443 
.3466 
.3487 
• 3506 
.3523 
• 3539 
•3553 
• 3566 
• 3578 
.3589 
.3600 
.3610 
.3618 
.3626 
.3633 
-3640 
.3647 
.3661 
.3673 
.3684 
.3693 
• 3701 
• 3707 
• 3714 
• 3719 
.3723 
.3727 
• 3731 
• 3735 
.3738 
• 3740 

1.365 
1.362 
1.360 
1.358 
1.356 
1.354 
1.352 
1.351 
1.350 
1.349 
1.349 
1.348 
1.347 
1.347 
1.346 
1.346 
1.346 
1.345 

g(MG5N) 

16.61 
18.56 
20.64 
22.83 
25.16 
27.60 
30.17 
32.86 
35-68 
38.63 
41.70 
44.91 
48.23 
51.68 
55.26 
58.96 
62.79 
66.77 

f(Mo%) 

0.2916 
.2968 
.3015 
•3057 
.3094 
.3128 
.3158 
.3186 
• 3211 
.3234 
.3255 
•3275 
.3292 
• 3309 
•3323 
• 3337 
•3350 
.3363 
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TABLE I.- CONCLUDED 

M05N 

7 = 7± 7 = 7a (T0 = 500°R) 

g(M08N) f(M0%) y* g(M0SN) f(Mo&N) 

16.0 ^32.3 0.37^5 
17.0 487-7 • 37^9 
18.0 546.5 .3752 
19.0 608.6 • 3755 
20.0 674.2 • 3757 
22.0 815.3 .3761 
24.0 969.8 • 3764 
26.0 1138 .3766 
28.0 1319 • 3768 
30.0 1514 • 3770 
35-0 2060 .3772 
4-0.0 2690 .377^ 
4-5.0 34o4 .3775 
50.0 4202 • 3776 
60.O 6050 • 3777 
70.0 8233 • 3778 
80.0 10750 .3778 
90.0 13610 • 3779 

100.0 16800 .3779 
• 00 .3780 
  



NACA TW 2646 45 

f l 

cvi <o o 
^. ^» ^\J 

1 1 1 

2£-/2!L  'OIJDJ qfiuajts douoqjntsiQ 
or   '     o t 

I 

5 5 

! 

? 

o 

1 
i 

4»    5 

I    1 
I 

I 

| 
.5*» 

Preceding Page Blank 



ke NACA TW 2646 

-0.08 

0.2 0.4 0.6 

Chordwise  station, x/c 

(a) Mo =3.5 

0.8 1.0 

tf 

I 
8 

I 
Method of characteristics 

 '- Shock- expansion method 
Slender-airfoil method 

0.8 1.0 O 0.2 0.4 0.6 

Chordwise station, x/c 

(b)M0 = 5 

Figure 2. - Pressure distribution on 10-percent-thick biconvex airfoil 

section for various free-stream Mach numbers   at a=0° 
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Figure 2. - continued. 
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Figure 2. - concluded. 
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(a) Oblique shock-wave flows 
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Figure 6 —Accuracy of slender-airfoil method in predicting pressure 

coefficients (y=l.4). 
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(a) Point in field. 

(b) Point on surface. 

C'^hock «"" 

(c) Point on shock wave. 

Figure /6.-Diagram of point system in the method of characteristics for the 
two - dimensional flow of a calorically imperfect gas. 
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